¿Qué es NLP?…procesamiento de lenguaje natural

Las entradas de esta categoría contienen ejemplos de NLP, pero en general la implementación de la librería NLTK de python y su contra parte en tm en R project, pero principalmente los ejemplos son en Python. La idea es compartir de manera breve algunos detalles y ejemplos que en buena parte provienen de la referencia [1] y están disponibles en línea en la referencia [2].

Agrego algunos comentarios o variaciones, la intención con estas entradas es motivar a que se consulten otras fuentes y  comentar más adelante sobre lo avances recientes en Deep Learning en NLP, sobre lo cual se puede consultar la referencia [3].

También comparto unos ejemplos haciendo uso de otros módulo, scikit-learn, para implementar algunas técnicas de Machine Learning.

En caso de estar interesado en investigar sobre una breve introducción teórica y con muchos detalles en explicación,  para mi gusto una buena referencia son los capítulos 22 y 23 de la referencia [4], en el cual se  desarrolla el marco teórico sobre el cual hasta ahora es en parte vigente la investigación en este tipo de temas. Existen nuevas metodologías y nuevas técnicas, sobre material de investigación por la relevancia que se tienen de mejorar los sistemas y técnicas para el procesamiento de lenguaje natural.

Un ejemplo vistoso….qué no me quedó.

Dejo la liga donde puede visualizar un ejemplo de nubes de palabras hechas con el módulo wordcloud de python. Tuve algunos problemas con las fuentes  para poder correrlos en windows y el código para poder hacer que funcione correctamente, así que posteriormente comparto los detalles del ejemplo que tenía pensado compartir. Puede verse el código de ejemplo de Alicia en el mismo repositorio.

alice

Liga del repositorio: https://github.com/amueller/word_cloud

Comentario: Espero posteriormente corregir los problemas del código con las fuentes de windows.

Un ejemplo no tan vistoso

Algunos conceptos que no menciono a detalle son las listas, tuplas y cadenas. Estas son estructuras de datos de python, se cuenta con mucha información sobre cómo se opera con ellas o qué métodos funcionan.

Un ejemplo sencilla para conocer cómo se trabaja con ellas es usar Ipython  es lo siguiente:

#Listas
a=['1','2','3','4']
#type() dice el tipo de datos que es
type(a)
#En Ipython 
a.<taps>
#Despliega una lista de métodos básicos para las listas

#Cadena
b='1234'
type(b)

b.<tabs>
#Despliega una lista de métodos básicos para las cadenas

#Define una tupla
c=("1","2","3","4")
type(c)
c.<tabs> 
#Despliega dos métodos básicos con las tuplas

En las referencias se pueden consultar operaciones con los métodos o con otras funciones de python. Estas estructuras de datos son importantes, debido a que muchos de los textos con cargados como listas o como cadenas  y se opera con ellos mediante sus operaciones naturales.

Debido a que hablar de listas, tuplas y diccionario requiere mucho detalle recomiendo consultar una breve introducción en línea proporcionada por el grupo de Stanford, el cual es breve y preciso respecto a lo que se necesita saber de esos temas:

Liga del tutorial de Stanford: Introducción a Python

Lo siguientes ejemplos pueden ser enriquecidos consultando la referencia [1] y [2], las cuales son sumamente buenas y contienen prácticamente todo lo que uno debe de saber de NLP, sobre todo del manejo de la librería NLTK.

Lo primero es tener el módulo instalado en python, ya que se tenga instalado lo importante es usar los textos o corpus con los que cuenta la librería.

Para instalar el módulo depende de la distribución de python que se instala pero sobre en general se puede usar el módulo pip para instalar cualquier módulo.

Lo básico es lo siguiente:

#NLTK
import nltk
nltk.download()
#Cargar los libros

nltk.book()
*** Introductory Examples for the NLTK Book ***
Loading text1, ..., text9 and sent1, ..., sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G . K . Chesterton 1908

Ya que se tiene esto, se cuenta con 9 textos con los cuales se puede trabajar o aprender a usar las funciones básicas de NLTK.

En la lógica de procesar textos está en medio el concepto central de Corpus, esto en el fondo significa que es un conjunto de textos. La intención en general es estudiar o construir Corpus y analizarlos.

En los libros disponibles en NLTK en algunos casos son un textos y no una colección, pero por ejemplo, el el texto 3, 4 y 8 son Corpus, en otro caso está formado el Corpus por un solo texto. Pero siendo abstracto, un conjunto es no vacío si cuenta por lo menos con un elemento( distinto al vacío, cosa de teoría de conjunto). Pero en resumen el conecto de Corpus en cualquiera de las notaciones del procesamiento de textos significa un conjunto de textos.

Algunas operaciones sencillas son identificar concordancias, cuando una palabra tiene contextos similares o cuando tienen un contexto común. La diferencia entre similar y común, es que en la primera se explora qué otras palabras tienen el mismo contexto y en común se toman dos palabras y se explora si tienen algo en común en el contexto.

Un tema delicado es la definición de “contexto”, esto para un sentido práctica en el procesamiento tienen la idea de identificar al derredor de que palabras aparece la palabra que buscamos.

Entonces como ejemplo, suponiendo que elegimos el Corpus de discursos, aún que están en inglés una palabra que posiblemente aparezca es ‘nation’, así que podemos explorar su concordancia, las palabras similares y eligiendo alguna de las similares podemos explorar si tienen un contexto común.

#Ejemplo
text4.concordance('nation')

#Lo que se vería en la consola es:
#Displaying 25 of 302 matches:
# to the character of an independent nation seems to have been distinguished by
#f Heaven can never be expected on a nation that disregards the eternal rules o
#first , the representatives of this nation , then consisting of little more th.....

#Reviso las palabras similares en el Corpus
text4.similar('nation')

#Lo que se vería es:

#people country government world union time constitu#tion states
#republic law land party earth future other presiden#t strength war
#congress spirit

#Elijo la palabra 'country' para explorar el contexto común con la palabra 'nation'
# Se debe de ingresar en la función como lista , es decir se usa:[]
text4.common_contexts(["nation","country"])

#our_by of_and no_can the_now and_the our_from the_t#he no_has whole_in
#our_that the_in our_i this_to our_today the_for a_w#e our_in the_are
#the_i the_and

Ahora en  breve lo que hacen las funciones anteriores es encontrar el contexto, las palabras que tienen “contexto similar” y compara el contexto común.

Algo que siempre está presente en el análisis de datos es hacer gráficas, entonces una gráfica fácil de hacer es explorar la dispersión de un conjunto de palabras o como se comporta la frecuencia con la cual aparecen ciertas palabras en un Corpus.

El ejemplo lo hago con el Corpus text4 que son discursos.

#Gráfica de dispersión
text4.dispersion_plot(["nation","people","government","law"])

#Gráfica de la frecuencia de las palabras

fdist=FreqDist(text4)
fdist.plot(50,cumulative=True)

Las gráficas que se obtienen son la siguientes:

Dispersión

Frecuencia_de_Palabras

La primera gráfica es similar a la que se construye para hacer una gráfica  “jitter” de un conjunto de datos, de cierto modo muestra las apariciones de las palabras en el texto y la segunda gráfica muestra cuales palabras domina la distribución de la frecuencia de 50 palabras.

Otro aspecto básico cuando se analizan datos, es conocer información numérica, es decir; en este caso sería importante conocer la cantidad de palabras de un texto, cuantas se usaron sin contar repeticiones y quitar las palabras o puntuaciones que puedan ser contadas como caracteres. Esto último está relacionado con el concepto de “tokenización”  del texto.

El código siguiente hace las operaciones anteriores:

#Conteo
len(text4)
145735
#Contando las palabras y símbolos , sin repetición
len(set(text4))
9754
#Porcentaje en el que aparecen las palabras
from __future__ import division

len(text4)/lent(set(text4))

14.941049825712529

#Conteo de apariciones de una palabra en el texto

text4.count('nation')
235

#Porcentaje de apariciones en todo el texto

text4.count('nation')/len(text4)
0.0016125158678423166
text4.count('and')/len(text4)
0.03424709232511065

Esto último no tienen mucha relevancia cuando se piensa en un solo texto, pero pensando que se tienen varios textos que analizar puede resultar interesante como se comporta la densidad de los textos y comparar entre ellos.

Un ejemplo den R.

Para hacer el ejemplo en R uso algunos librerías y un texto; Alicia en el país de las maravillas. Para el ejemplo hago uso de las librerías tm, languageR y ggplot2.

Lo siguiente es más normal a lo que se hace, en el ejemplo en Python ya se contaba con Corpus de ejemplo y se analizaban algunas cosas sobre las palabras, contexto, distribución, etc. En este ejemplo, se construye a partir de un texto un Corpus  y su matriz de términos.También se construye una tabla con información básica de las frecuencias.

No explico a detalle lo que hacen las funciones pero pueden leer un poco respecto a como las uso en las entradas ¿Cuánto se puede saber de los discursos? y Clasificación Binaria.

Las funciones que uso son las siguientes:

library(tm)
library(ggplot2)
library(languageR)

tdm2<-function(doc){
 docCor<-Corpus(VectorSource(doc))
 docs <- tm_map(docCor, stripWhitespace)
 docs <- tm_map(docs, removeWords, stopwords("english"))
 docs <- tm_map(docs, removePunctuation)
 docs <-tm_map(docs,removeNumbers)
 docs <- tm_map(docs,content_transformer(tolower))
 DocsTDM <- TermDocumentMatrix(docs) 
 return(DocsTDM)
}

TablaFreq<-function(TDM){
 docmatrix <- as.matrix(TDM)
 doc.counts <- rowSums(docmatrix)
 doc.df <- data.frame(cbind(names(doc.counts),as.numeric(doc.counts)),stringsAsFactors = FALSE)
 names(doc.df) <- c("Términos", "Frecuencia")
 doc.df$Frecuencia <- as.numeric(doc.df$Frecuencia)
 doc.occurrence <- sapply(1:nrow(docmatrix),
 function(i)
 {
 length(which(docmatrix[i, ] > 0)) / ncol(docmatrix)
 })
 doc.density <- doc.df$Frecuencia / sum(doc.df$Frecuencia)
 
 # Add the term density and occurrence rate
 doc.df <- transform(doc.df,density = doc.density,ocurrencia =doc.occurrence)
 S=head(doc.df[with(doc.df, order(-Frecuencia)),], n=50)
 return(S)
}
 
data(alice)
L=tmd2(alice)
L1=TablaFreq(L)

#Gráfica de frecuencia de palabras.

ggplot(L1,aes(L1$Frecuencia,factor(L1$Términos,levels=L1$Términos)))+geom_point(stat="identity", colour="red")+ggtitle("Tabla de Frecuencias")+xlab("Frecuencia de la palabra")+ylab("Las 50 alabra más frecuentes")

Lo que se hace es construir un Corpus del texto de Alicia en el país de las maravillas, luego se construye una tabla con las frecuencias de las palabras respecto a los que se llama Matriz de términos del texto o corpus, por último se grafica el comportamiento de las 50 palabras más frecuentes.

La gráfica que se obtiene es la siguiente:

Alice_plot

En esta pequeña entrada solo traté de mostrar que existen varias herramientas para el procesamiento del lenguaje natural y de text mining. Si bien no es una entrada muy vistosa, la intención es en las siguientes entradas explicar más detalles y técnicas. En las referencias se encuentra suficiente información para aprender respecto al tema.

Referencias:

1.-http://www.nltk.org/book_1ed/

2.-http://www.nltk.org/book/

3.-http://nlp.stanford.edu/courses/NAACL2013/

4.-http://cs224d.stanford.edu/syllabus.html

5.-http://www.gandhi.com.mx/inteligencia-artificial-un-enfoque-moderno

Clasificación binaria….Naive Bayes

Un poco sobre análisis de textos

Lo principal de esta entrada es dar un ejemplo de como clasificar correos, esto lo hago siguiendo el ejemplo de libro Machine Learning for Hackers [1]. La técnica es conocida como Naive Bayes, pero creo conveniente comentar un poco de la librería de R para text mining.

La librería tm   permite realizar text mining en R project. El text mining se aboca sobre la conversión textos a datos que puedan ser analizados, ya sea por herramientas estadísticas, o por técnicas de procesamiento natural del lenguaje (NLP, en ingles).

La librería es bastante conocida en la red y existe mucha información, en varios blog se muestran ejemplos interesantes. En particular se mostraban análisis de textos de Twitter, un buen ejemplo es el de Yanchang Zhaog, este se puede encontrar en sus notas data mining con R. Lo desafortunado es que la API de twitter fue actualizada y ya no se puede replicar el ejemplo con el código de Yanchang.

Para ejemplificar el funcionamiento de tm tomo los títulos de las primeras planas de un periódico desde el día 1 al 23 de Marzo.

Los pasos son los siguientes:

  1. Extraemos los HTML de cada portada desde la página del periódico.
  2. Tomo el texto de la página web o HTML.
  3. Le quito a los textos la mayoría de palabras que forman parte de los títulos y secciones del periódico.
  4. Proceso con tm los archivos.
  5. Construyo una nubes de palabras.

Podríamos hacer otro tipo de análisis  después del punto 4, pero implica hablar de otros conceptos, como cluster, PCA  o redes. Observación: No pongo todo el código, pero prácticamente solo falta el proceso del paso 2.

#Paso 0
#Cargamos las librerías 
library(tm)
library(wordcloud)
library(stringi)

#Paso 1
#Extraemos los datos
direc<-""http://www.eluniversal.com.mx/hemeroteca/edicion_impresa_201503"
comp_dir<-".html"
dias<-c("01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23")
#Paso 2
#Extraemos los datos
edi_impresa<-character(length(dias))

for (i in 1:length(dias)){
     edi_impresa[i]=htmlToText(stri_paste(direc,dias[i],comp_dir))
    }
#Paso 3 y 4
#Construimos el Corpus
Doc<-Corpus(VectorSource(edi_impresa))

#Visualizamos Doc
Doc[[1]]

#Procesamos Doc con la librería tm

Doc1<-tm_map(Doc, function(x) stri_replace_all_regex(as.character(x), "<.+?>", " "))
Doc2 <- tm_map(Doc1, function(x) stri_replace_all_fixed(x, "\t", " "))
Doc3 <- tm_map(Doc2, PlainTextDocument)
Doc4 <- tm_map(Doc3, stripWhitespace)
Doc5 <- tm_map(Doc4, removeWords, stopwords("spanish"))
Doc6 <- tm_map(Doc5, removePunctuation)
Doc7<-tm_map(Doc6,removeNumbers)

#Hacemos una lista con todas las palabras de títulos o secciones del periódico
L<-#LO OMITO
Doc8 <- tm_map(Doc7, removeWords, L)
Doc9 <- tm_map(Doc8,content_transformer(tolower))

#Contruimos nuestra matriz de TDM
DocsTDM <- TermDocumentMatrix(Docs14)

Lo que hice hasta esta parte del código es la construcción de la matriz de términos de los documentos. Con ello puedo revisar las frecuencias de las palabras. Como observación, debido a que no hice bien la lista de palabras a remover aparecerán algunas que se refieren a títulos y secciones del periódico.

#Revisamos las frecuencias de las palabras
Grupo1<-rowSums(as.matrix(DocsTDM))
Grupo1<-subset(Grupo1,Grupo1>=25)

#Graficamos nuestras palabras
library(ggplot2)
qplot(names(Grupo1), Grupo1, geom="bar", xlab="Terms") + coord_flip()
barplot(Grupo1, las=2)

 Palabras_más_frecuentes

Por último hago la nube de palabras.

#Nube de palabras
Grupo1<-subset(Grupo1,Grupo1>=10)
m<-as.matrix(Grupo1)
word_freqs = sort(rowSums(m), decreasing=TRUE)
dm = data.frame(word=names(word_freqs), freq=word_freqs)
#Nube de palabras
wordcloud(dm$word, dm$freq, random.order=FALSE, colors=brewer.pal(8, "Dark2"))

Imagen_datos_nube

Bueno, la idea sería procesar correctamente los datos y presentar la nube de palabras con mayor frecuencia de apariciones en el texto o con algún criterio que de deseé. Otro ejemplo sería revisar cuales palabras persistieron por el paso de los días en el mes de Marzo. También se puede hacer otro tipo de análisis, por ejemplo buscar cluster  o tópicos en los datos, lo cual resulta más interesante.

Cómo observación, la librería tm cuenta con aproximadamente 54 funciones y cabe mencionar que el objeto principal es la construcción y procesamiento de Corpus, que es como un concentrado de todos los textos  que se analizan. Para procesar el contenido del Corpus se usa la función tm_map, la cual funciona análogamente a las funciones apply, lapply, sapplycon la diferencia de que se aplica solo a los Corpus. Para mayor detalle se puede revisar el manual de la librería [].

Si se tiene interés en aprender sobre procesamiento de textos siguiendo las metodologías de NLP, se tienen muy buenos cursos de la plataforma Coursera. Recomiendo el curso impartido por la Universidad de Stanford.

¿Web Scraping con R?

El procesar textos ha sido una área de investigación desde hace tiempo, ahora se tienen librerías y metodologías estándar, pero donde abunda mucho información para analizar y era complicado extraerla es en la web. Ha este tipo de programas se les llama web scraping.

Mario Annau liberó una librería en R llamada tm.plugin.webminig y por otro lado Hadley Wickham liberó la librería rvest. Las dos librerías se toman como modelo librerías de Python, las cuales son más robustas y se han mejorado con el tiempo.

No hago algún ejemplo, pero se puede revisar la documentación y replicar el ejemplo que comparten cada uno sobre el uso de su librería. Lo interesante es que las dos tratan de simplificar pasos que tm no hace por si sola, principalmente por la interacción con textos HTML.

Como recomendación ( y eso en cada entrada de esta categoría) creo importante revisar el repositorio de Hahley Wickham, el cual a contribuido a la comunidad de R project con librerías muy populares y de mucho utilidad, basta mencionar ggplot2 y reshape. Se ha convertido en el RockStar de R para muchos.

Clasificación de mensajes-detectando Spam

 

En la entrad sobre Máquina de Soporte Vectorial (SVM) hice un ejemplo comparativo para clasificar correos. Replico el código en esta entrada solo enfocándome en Naive Bayes.

#Se instala la librería kernlab para usar sus datos 
library(kernlab)
#Se extraen los datos
data(spam)
#Se genera una muestra de 100 índices
index=sample(1:nrow(spam),100)
#Se carga la librería e1071 para usar la función naiveBayes
library(e1071)
model=naiveBayes(type~.,data=spam[-index,])
model=naiveBayes(type~.,data=spam[-index,])
pred=predict(mol,spam[index,])
table(pred,spam[index,58])
 
pred   nonspam   spam
nonspam  38      0
 spam     29     33

Los datos que se usan en el código anterior son datos ya procesados, los cuales ya cuentan con la etiqueta o variable categórica de ser Spam o no. Lo recomendable es  cargar los datos y explorar la información, en este caso solo hago uso de los algoritmos Naive Bayes que se encuentra en la librería e1071.

Hago otro ejemplo con los datos de la librería kernlab, estos corresponden a 8993 personas de las cuales se toman 14 datos y uso el algoritmo de Naive Bayes para evaluar la clasificación de 1000 de estas personas por sexo.

#Se carga las librerías
library(kernlab)
library(e1071)
#Se extraen los datos
data("income")
#Se toman 1000 personas de los datos
index=sample(1:nrow(spam),1000)
#Se genera el modelo Naive Bayes de la librería e1071
modelo=naiveBayes(SEX~.,data=income[-index,])
#Se estima la predicción
pred=predict(modelo,income[index,])
#Se presentan los datos en modo de una tabla
table(pred,income[index,2])
 
pred  M   F
 M   234 162
 F   220 384

En este último ejemplo, al igual que el primero se hace uso de datos previamente procesados. Lo cual facilita la aplicación del algoritmo.

Las tablas de los dos ejemplos muestra dos categoría, los errores del algoritmo se pueden considerar como la cantidad de Hombres de la fila M de Male que son considerados como mujeres en la columna F de Famale, es decir; 384. Equivalente las 220 mujeres que son clasificadas como hombres en la segunda fila.

Estos errores son conocidos como falsos negativos y falsos positivos, el objetivo de las técnicas de clasificación es tener el mínimo de este tipo de errores.

El siguiente ejemplo consiste  también en clasificar correos, donde un conjunto son identificados como Spam y otro conjunto se sabe que no es spam. Estos son extraídos desde SpamAssasin, la dirección es http://spamassassin.apache.org/publiccorpus/ . Pero recomiendo bajar todos los datos y código libro Machine Learning for Hackers  dese el repositorio de Jhon M. White en Github, para replicar de manera completa el ejemplo.

A diferencia de los primero dos ejemplos de clasificación, en este caso los datos o textos se van a procesar para identificar las palabras que aparecen con mayor frecuencia en los Spam y las palabras de los que no son Spam.

Se hará uso de 3 funciones, la primera para extraer el mensaje del correo, la segunda para convertir el mensaje en una matriz de términos del documento, con la cual se revisa la frecuencias de las palabras y se aplica una tercera función para clasificar cualquier correo con respecto a las palabras que se encuentran con mayor frecuencia en los correos identificados como Spam.

Naive Bayes

Antes doy una breve explicación  de la idea a tras de la clasificación. Suponiendo que se tienen dos clase, hombres y mujeres; y una lista de personas, por ejemplo: Guadalupe, Ernesto, Sofía, Andrea, Guadalupe, Sofía, Luis, Miguel, Guadalupe y Jaime

Nombre     Sexo
Guadalupe- Mujer
Ernesto  - Hombre
Sofía    - Mujer
Andrea   - Mujer
Guadalupe- Hombre
Sofía    - Mujer
Luis     - Hombre
Miguel   - Hombre
Guadalupe- Mujer
Jaime    - Hombre

De la lista anterior al considerar dos categorías, hombres y mujeres, se puede tomar una persona, ejemplo Guadalupe,  pero uno puede preguntarse ¿cuál es la probabilidad de que sea mujer dado que la persona se llama Guadalupe?

P(Mujer|Guadalupe)=[P(Guadalupe|Mujer)P(Mujer)]/P(Guadalupe)

La ecuación anterior expresa P( | ) como la probabilidad condicional y la regla de Bayes. Con los datos del ejemplo anterior  se puede calcular el valor de P(Mujer|Guadalupe)=2/3.

Análogamente se puede calcular P(Hombre|Guadalupe)=1/3

Entonces  lo que se tiene es que tomando a una persona que se llama Guadalupe es más probable que sea mujer. Pero se pueden considerar más atributos, como edad, peso, color de ojos, etc. Así  se puede uno volver a preguntar, ¿cuál es la probabilidad de que sea Mujer dado que se llama la persona Guadalupe?, pero claro ahora se pueden considerar los nuevos atributos en el calculo de la probabilidad condicional.

Lo que se modificará en el calculo es la cantidad de factores, ejemplo:

P(Guadalupe|Mujer)=P(Peso|Mujer)*P(Color de ojos|Mujer)*P(Edad|Mujer)

En el ejemplo de los correos se tiene una lista de palabras que se encuentran en aquellos que son Spam, entonces el total de atributos será dado por el total de palabras. La pregunta que se hace es: ¿el correo es Spam dado que tienen estas palabras?

Lo que  no menciono en el calculo anterior es que los atributos  se consideran independientes condicionalmente. Los aspectos teóricos de manera breve se pueden consultar en la parte 4 de las notas de Andrew Ng o en las notas de Andrew Moore, con más detalles se pueden encontrar en la referencias [2,3,4].

Espero que la explicación pese a ser corta ayude a entender lo que se va hacer con los correos que se procesan.

Correos..¿spam o no?

Como antes mencioné, tomo un conjunto de correos identificados como Spam y otro que se tienen identificado que no lo es. Se procesan para formar una matriz de términos para cada conjunto de correos. Con la matriz se asignarán densidades a las palabras  y por último se construye una función para clasificar.

Los primeros 500 correos se consideran como el conjunto de entrenamiento para el proceso de clasificación.

#Cargamos los datos
library(tm)
library(ggplo2)
spam.path <- file.path("data", "spam")
easyham.path <- file.path("data", "easy_ham")

#Funciones que usaremos
######Primera función

get.msg <- function(path)
{
 con <- file(path, open = "rt")
 text <- readLines(con)
 msg <- text[seq(which(text =="")[1]+1, length(text), 1)]
 close(con)
 return(paste(msg, collapse = "\n"))
}

#####Segunda función

get.tdm2 <- function(doc.vec)
{
 library(stringi)
 doc.corpus<-Corpus(VectorSource(doc.vec))
 cor.doc<-tm_map(doc.corpus, function(x) stri_replace_all_regex(as.character(x), "<.+?>", " "))
 cor.doc <- tm_map(cor.doc, PlainTextDocument)
 cor.doc <- tm_map(cor.doc,content_transformer(tolower))
 cor.doc <- tm_map(cor.doc,removeWords,stopwords("english"))
 cor.doc<- tm_map(cor.doc, removePunctuation)
 cor.doc<- tm_map(cor.doc, removeNumbers)
 cor.doc<-tm_map(cor.doc, stripWhitespace)
 doc.dtm<- TermDocumentMatrix(cor.doc)
 return(doc.dtm)
}

######Tercer función
classify.email <- function(path, training.df, prior = 0.5, c = 1e-6)
{
 #Extrae el mensaje
 #Convierte los datos en una matrz de terminos del documento

 msg <- get.msg(path)
 msg.tdm <- get.tdm(msg)
 msg.freq <- rowSums(as.matrix(msg.tdm))
 msg.match <- intersect(names(msg.freq), training.df$términos)
 if(length(msg.match) < 1)
 {
 return(prior * c ^ (length(msg.freq)))
 }
 else
 {
 match.probs <- training.df$ocurrencia[match(msg.match, training.df$términos)]
 return(prior * prod(match.probs) * c ^ (length(msg.freq) - length(msg.match)))
 }
}

######Procesar los los Spam

spam.docs <- dir(spam.path)
spam.docs <- spam.docs[which(spam.docs != "cmds")]
all.spam <- sapply(spam.docs,function(p) get.msg(file.path(spam.path, p)))
spam.tdm <- get.tdm2(all.spam)

######Procesamos 500 correos que no son spam

easyham.docs<-dir(easyham.path)
easyhamo.docs500=easyham.docs[1:500]
easyham500<-sapply(easyham.docs500,function(p)get.msg(file.path(easyham.path,p))
easyham500.tdm<-get.tdm2(easyham500)

En el código anterior se obtiene las matrices de términos y se puede ver los valores de esta en R, solo colocando el nombre:

#Revisamos los valores de los corpus

spam.tdm

<<TermDocumentMatrix (terms: 23109, documents: 500)>>
Non-/sparse entries: 70715/11483785
Sparsity : 99%
Maximal term length: 298
Weighting : term frequency (tf)

#Corpus para correos que no son Spam
easyham500.tdm

<<TermDocumentMatrix (terms: 13118, documents: 500)>>
Non-/sparse entries: 50247/6508753
Sparsity : 99%
Maximal term length: 245
Weighting : term frequency (tf)

Con las matrices de términos se construye una matriz con las densidades de las palabras.

#Matriz de densidad

spam.matrix <- as.matrix(spam.tdm)
spam.counts <- rowSums(spam.matrix)
spam.df <- data.frame(cbind(names(spam.counts),as.numeric(spam.counts)),stringsAsFactors = FALSE)
names(spam.df) <- c("términos", "frecuencia")
spam.df$frecuencia <- as.numeric(spam.df$frecuencia)
spam.occurrence <- sapply(1:nrow(spam.matrix),
 function(i)
 {
 length(which(spam.matrix[i, ] > 0)) / ncol(spam.matrix)
 })
spam.density <- spam.df$frecuencia / sum(spam.df$frecuencia)

#Aplicamos el mismo proceso para easyham500.tdm

#Términos frecuentes en spam.df

head(spam.df[with(spam.df, order(-ocurrencia)),],n=15)
      términos frecuencia density ocurrencia
6019    email    837    0.007295962 0.574
15199   please   459    0.004001011 0.520
3539    click    350    0.003050880 0.454
11722   list     419    0.003652339 0.442
21468   will     843    0.007348262 0.442
7317    free     651    0.005674637 0.420
9990  information 364   0.003172915 0.374
13837   now      329    0.002867827 0.352
2899    can      518    0.004515302 0.344
7687    get      425    0.003704640 0.334
14323   one      376    0.003277517 0.322
13511   new      336    0.002928845 0.300
16452   receive  327    0.002850394 0.298
19437   time     316    0.002754509 0.296
12527   message  245    0.002135616 0.286

#Términos frecuentes en easy.df

 head(easy.df[with(easy.df, order(-ocurrencia)),],n=15)
       términos frecuencia density ocurrencia
5052    group   232      0.003446125 0.388
12391   use     272      0.004040284 0.380
12979   wrote   238      0.003535249 0.380
1577    can     348      0.005169187 0.368
6982    list    249      0.003698642 0.368
8258    one     358      0.005317727 0.338
6527    just    273      0.004055138 0.326
8120    now     231      0.003431271 0.324
4812    get     230      0.003416417 0.282
6924    like    232      0.003446125 0.282
3653    email   188      0.002792549 0.276
11337   subject 162      0.002406346 0.270
11854   time    188      0.002792549 0.258
12834   will    318      0.004723567 0.254
6112   information 162   0.002406346 0.232

 De los datos anteriores se observa que comparten los dos tipos de correos algunas palabras, pero se aprecia que las ocurrencias en los Spam tienen valores más altos.

Lo que sigue es comparar las palabras contra una muestra de correos que no son Spam, pero por el texto que contiene son más complicados para detectarse como no-Spam.

Usamos la función classify.email se prueba contra el conjunto de entrenamiento que son las matrices spam.df y easy.df

#Clasificación
hardham.path <- file.path("data", "hard_ham")
hardham.docs <- dir(hardham.path)
hardham.docs <- hardham.docs[which(hardham.docs != "cmds")]

hardham.spamtest <- sapply(hardham.docs, function(p) classify.email(file.path(hardham.path, p), training.df = spam.df))
 
hardham.hamtest <- sapply(hardham.docs,function(p) classify.email(file.path(hardham.path, p), training.df = easyham.df))

hardham.res <- ifelse(hardham.spamtest > hardham.hamtest,TRUE,FALSE)

summary(hardham.res)
   Mode FALSE TRUE NA's 
logical  242   7   0

Lo que se observa es que se clasifican 7 email como Spam, cuando no lo son. Es posible que se deba algún error en el procesamiento del TDM de los Spam, ya que el resultado obtenido es demasiado bueno.

Para cerrar esta entrada, hago lo que sería un paso de prueba del clasificador. Se inicia con un conjunto de entrenamiento y se prueba como responde para clasificar  2500 correos que no son Spam y que son fáciles de identificar (easyham).

#Función clasificador de Spam

spam.classifier <- function(path)
{
 pr.spam <- classify.email(path, spam.df)
 pr.ham <- classify.email(path, easy.df)
 return(c(pr.spam, pr.ham, ifelse(pr.spam > pr.ham, 1, 0)))
}
#Cargamos los 2500 correos

easyham.docs <- dir(easyham.path)
easyham.docs <- easyham.docs[which(easyham.docs != "cmds")]

#Los clasificamos

easyham.class <- suppressWarnings(lapply(easyham.docs,function(p){spam.classifier(file.path(easyham.path, p))}))

#Contruimos una matriz con los datos
easyham.matrix <- do.call(rbind, easyham.class)
easyham.final <- cbind(easyham.matrix, "EASYHAM")

class.matrix <- rbind(easyham.final)
class.df <- data.frame(class.matrix, stringsAsFactors = FALSE)

names(class.df) <- c("Pr.SPAM" ,"Pr.HAM", "Class", "Type")
class.df$Pr.SPAM <- as.numeric(class.df$Pr.SPAM)
class.df$Pr.HAM <- as.numeric(class.df$Pr.HAM)
class.df$Class <- as.logical(as.numeric(class.df$Class))
class.df$Type <- as.factor(class.df$Type)

#Hacemos la gráfica con la información de los correos clasificados

ggplot(class.df, aes(x = log(Pr.HAM), log(Pr.SPAM))) +
 geom_point(aes(shape = Type, alpha = 0.5)) +
 stat_abline(yintercept = 0, slope = 1) +
 scale_shape_manual(values = c("EASYHAM" =1),name = "Email Type") +
 scale_alpha(guide = "none") +
 xlab("log[Pr(HAM)]") +
 ylab("log[Pr(SPAM)]") +
 theme_bw() +
 theme(axis.text.x = element_blank(), axis.text.y = element_blank())

#Hacemos una tabla con las densidades 

easyham.col <- get.results(subset(class.df, Type == "EASYHAM")$Class)
class.res <- rbind(easyham.col)
colnames(class.res) <- c("NOT SPAM", "SPAM")
print(class.res)

          NOT SPAM SPAM
easyham.col 0.974 0.026

Se observamos que el clasificador identifica aproximadamente el 97.5% de los correos que no son Spam, lo cual es correcto y solo tienen un error (falsos positivos) de 2.5%. Este ejercicio se puede repetir con el resto de conjuntos de correos que se encuentran en los datos del texto Machine Learning for Hackers.

Grafica_Ham_vs_Spam

Espero que los ejemplos den una idea aproximada de lo que se hace con este algoritmo y como se usa para construir un clasificador, en el texto se tienen más detalles, pero en general traté de poner en esta entrada las ideas básicas.

También se debe de observar que la clasificación no se reduce solo a tener dos clases (Spam y no Spam), como mencioné en otras entradas existen varias técnicas de clasificación multi-clase y en muchas situaciones es probable que se tengan más de dos clases para analizar.

Referencias:

1.-http://shop.oreilly.com/product/0636920018483.do

2.-http://shop.oreilly.com/product/0636920018483.do

3.-http://www.amazon.com/Artificial-Intelligence-Modern-Approach-Edition/dp/0136042597

4.-http://statweb.stanford.edu/~tibs/ElemStatLearn/

5.-http://www.autonlab.org/tutorials/naive02.pdf

6.-http://cs229.stanford.edu/