Aprendiendo de los datos-Análisis Exploratorio-Part 1

El título de la entrada se refiere hacer con los datos algunas gráficas, de las cuales uno puede ir analizando posibles relaciones o visualizando conexiones entre ciertas variables. Esto se llama “Análisis Exploratorio”.

Muchas de las técnicas de Machine Learning tienen su contra parte gráfica; es decir, existe algún recurso gráfico para visualizar el resultado del uso de los algoritmos.

En la entrada trato de mostrar ejemplos de las herramientas gráficas estándar, tanto con R project, como con Python. De cierto modo trato de ir de ejemplos gráficos sencillos a herramientas gráficas más sofisticadas, hasta quizás acercarme a mostrar algunos ejemplos de visualización de datos.

Esto último es quizás sumamente atractivo como campo de trabajo y herramienta para trasmitir descubrimientos o hacer amigable ciertas relaciones entre variables analizadas, ya que permite diseñar algunas gráficas interactivas. Lo malo es que en general las mejores herramientas de visualización; son herramientas web y requieren explicaciones totalmente distintas. Pero mi recomendación es visitar la página de D3 y hacer algunos de los ejemplos para darse una idea general. Ahora hay muchas herramientas de visualización de datos, pero al final ciertas gráficas son las básicas y suelen ser las más útiles.

Análisis Exploratorio

Como todo visionario, muchos años antes de que el poder de las computadoras estuvieran en nuestra sala, teléfono y en el día a día, Jhon W. Tukey auguró desde antes de 1977 en su libro “Exploratory Data Analysis”, la relevancia de dedicarse a la investigación de diseño de herramientas gráficas para visualizar relaciones estadísticas. De cierto modo, dejando como primera etapa hacer una análisis exploratorio entre las variables analizar y posteriormente hacer una análisis confirmatorio.

Así que la relevancia que tiene hacer un previo análisis gráfico es fundamental, pero no siempre es determinante. Con esto quiero decir que si bien una gráfica facilita la visualización de relaciones entre variables, esto no lo confirma. Por lo cual es bueno posteriormente hacer pasar nuestra hipótesis por alguna técnica estadística que respalde nuestro descubrimiento.

Existe un libro sobre la construcción de gráficas en español del Dr. Juan Carlos Correa de la Universidad de Medellín [2], el cual está disponible en la red de manera gratuita. De este libro tomo los principios de William Playfair sobre el análisis gráfico:

Principios.

  • Los métodos gráficos son un modo de simplificar lo tedioso y lo complejo.
  • Los hombres ocupados necesitan algún tipo de ayuda visual.
  • Un gráfico es más  accesible que una tabla.
  • El método gráfico es concordante con los ojos.
  • El método gráfico ayuda al cerebro, ya que permite entender y memorizar mejor.

Teniendo en cuenta que los anteriores principios fueron pensados en 1800, nos debería de hacer pensar en la relevancia que tienen el trasmitir conocimiento por métodos gráficos. Por eso no es sorpresa que siempre contar con algunas gráficas en nuestros reportes o aplicaciones facilita la visualización y entendimiento de los fenómenos o hechos estudiados.

Análisis Exploratorio con R

En R Project, desde su creación se contó con herramientas gráficas diversas y al pasar de los años se han agregado herramientas o librerías sumamente útiles, como lattice, ggplot y ggvis y ahora interfaces gráficas como Shiny.

En esta entrada hago 3 ejemplos, el primero usando las gráficas nativas o base de R, el segundo haciendo uso la librería lattice y el último haciendo uso de la librería ggplot. Y muestro como este último ejemplo se sirve para visualizar de manera interactiva las gráficas haciendo uso de la librería ggvis. Para gráficas de una sola variable hago uso de las nativas y ggplot, para ver relaciones entre varias variables hago uso de lattice y ggplot.

Para cada uno de los ejemplos indico como extraer los datos, el primer ejemplo fue motivado por un ejemplo compartido por el Dr. Yanchang Zhao y el segundo ejemplo fue motivado por Institute for Digital Research and Education de la universidad de California y la referencia [3,4].

 Ejemplo con librerías nativas en R.

Los datos ha usar son Iris, los cuales se encuentran por default en R, los gráficos que explico en breve son para explorar la información de una sola variable.

Boxplot

#Ejemplo
#Cargo los datos para todos los ejemplos
data(iris)
#Tamaño de los datos
dim(iris)
#Tipo de variables
str(iris)
#Conocer las variables
names(iris)

#Boxplot
range(iris$Sepal.Length)
boxplot(iris$Sepal.Length, main="Boxplot de la Longitud de Sepal-Datos Iris", ylab="Tamaño", col="2")

La gráfica anterior los beneficios que tienen es que es fácil de calcular en el sentido computacional, por otro lado de manera rápida uno puede detectar si la distribución de los datos es simétrica o no, puede notar varios detalles sobre los cuantiles y la mediana. Para más detalles pueden verse de manera fácil en wikipedia, si subestiman este sitio como referencia, están subestimando mucha información de calidad. En este ejemplo se hace notar que no es simétrica la distribución y no se detectan valores atípicos.

Boxplot

Jitter-Gráficas de Puntos

Esta gráfica es fácil e informativa, cuando se tienen una buena cantidad de datos se puede ver los puntos de aglomeración, lo cual permite identifica como se comporta la variable analizada. En el ejemplo no muestra claramente algún comportamiento apreciable.

#Ejemplo Jitter
#Se usan los mismo datos de boxplot

stripchart(iris$Sepal.Length, method='jitter',vertical=TRUE,pch=1, col="2", main="Gráfica de Puntos", ylab="Rango de Datos")

#Método 2
stripchart(iris$Sepal.Length, method='overplot',vertical=TRUE,pch=1, col="3", main="Gráfica de puntos", ylab="Rango de Datos")

Gr´ficas_puntosGraficas_puntos2

Histograma y Densidad

Las dos gráficas que más noto que se usan para describir propiedades de alguna variable son los histogramas y las gráficas de densidad. La primera tienen varios detalles que es recomendable revisar, no los comento a detalle, pero hacer variar la cantidad de clases afecta a la construcción del gráfico, por otro lado hacer cambios en considerar la estimación de la frecuencia o de la frecuencia relativa también cambio no de forma , sino de escala. Así que esos detalles se pueden revisar en información de ayudan con el comando help() en la consola de R.

La idea central de estos dos gráficos es presentar una estimación de la densidad de la variable analizada, por eso la forma del histograma y la gráfica de la densidad tienen forma similar.

#Histograma
#Pongo varios ejemplos de como ir agregando parámetros a la gráfica

#Gráfica 1
hist(iris$Sepal.Length)

#Gráfica 2
hist(iris$Sepal.Length,col="2",ylab="Frecuencia", xlab="Longitud del Sépalo", main="Histográma de la Longitud de Sépalo-Datos Iris")

#Gráfica 3
hist(iris$Sepal.Length,col="2",ylab="Frecuencia", xlab="Longitud del Sépalo", main="Histográma de la Longitud de Sépalo-Datos Iris", labels = TRUE)

#Gráfica 4
hist(iris$Sepal.Length,col="2",ylab="Frecuencia", xlab="Longitud del Sépalo", main="Histográma de la Longitud de Sépalo-Datos Iris", labels = TRUE,border="7", nclass=15)

#Gráfica 5-Considerando las frecuencias relativas
hist(iris$Sepal.Length,col="2",ylab="Frecuencia relativa", xlab="Longitud del Sépalo", main="Histográma de la Longitud de Sépalo-Datos Iris", labels = TRUE,border="7", nclass=15, probability = TRUE)
hist(iris$Sepal.Length,col="2",ylab="Frecuencia relativa", xlab="Longitud del Sépalo", main="Histográma de la Longitud de Sépalo-Datos Iris", labels = TRUE,border="7", probability = TRUE)

Hist_1Hist_3
Hist_2

La gráfica de densidad hace una estimación de la densidad, para ello existen  varias funciones ya que la densidad no necesariamente es gausiana o de forma de campana. Lo que determina la aproximación es el tipo de “kernel” que se emplea para estimarla, en general el kernel que se considera como default es gaussiano, pero puede ser modificado. Para ver detalles de las opciones se puede consultar en la información de ayuda en R, poniendo el comando help(density).

#Gráfica de Densidad
#Si se pide estimar la densidad se obtienen lo siguiente
 
density(iris$Sepal.Length)

#Call:
# density.default(x = iris$Sepal.Length)

#Data: iris$Sepal.Length (150 obs.); Bandwidth 'bw' #= 0.2736

# x y 
# Min. :3.479 Min. :0.0001495 
# 1st Qu.:4.790 1st Qu.:0.0341599 
# Median :6.100 Median :0.1534105 
# Mean :6.100 Mean :0.1905934 
# 3rd Qu.:7.410 3rd Qu.:0.3792237 
# Max. :8.721 Max. :0.3968365

#Para la gráfica se hace uso de la funación plot()

plot(density(iris$Sepal.Length), xlab="Rango de Valores", ylab="Densidad", main="Gráfica de la Densidad", col="3",type="b", add=TRUE)

Density

Pie y Barras

Para estas dos gráficas se requiere tomar los datos para formar tablas, las cuales facilitan la gráfica tanto de barras como de pie. Principalmente se usan con variables categóricas, para estos datos la gráfica de barras no muestra gran funcionalidad por que la cantidad es la misma para las tres categorías.

#Se usan los mismos datos

table(iris$Species)
#setosa versicolor virginica 
# 50 50 50 
 
pie(table(iris$Species), radius = 0.9, col=rainbow(24),main="Gráfica Circular", clockwise=TRUE)
barplot(table(iris$Species), main="Gráfica de Barras",col="2", border="7", ylab="Cantidad")

Pie_1

Barras

La ventaja de usar gráficos para representar la información o el comportamiento de las variables analizadas resulta ser más atractivo cuando varios tipos de gráficas se combinan. En el caso de gráficos para una sola variable dos ejemplos rápidos se obtienen al combinar boxplot y jitter, histogramas y densidad.

#Combinación de gráficas

#Gráfica combinada 1
boxplot(iris$Sepal.Length, main="Boxplot de la Longitud de Sepal-Datos Iris", ylab="Tamaño", col="2")
stripchart(iris$Sepal.Length, method='jitter',vertical=TRUE,pch=1, main="Gráfica de Puntos", ylab="Rango de Datos", add=TRUE)

#Gráfica combinada 2
hist(iris$Sepal.Length,col="2",ylab="Frecuencia relativa", xlab="Longitud del Sépalo", main="Histográma de la Longitud de Sépalo-Datos Iris", labels = TRUE,border="7", probability = TRUE)
lines(density(iris$Sepal.Length), xlab="Rango de Valores", ylab="Densidad", main="Gráfica de la Densidad", col="3",type="b", add=TRUE)

Comb_1

Comb_2

En lo siguiente voy a replicar las gráficas haciendo uso de la librería ggplot2, a primera vista si no se conoce el modelo bajo el cual trabaja ggplot2 puede parecer bastante engorroso pasar de las gráficas base de R a las que proporciona esta librería.

Mi impresión es la siguiente, resulta muy fácil cuando uno aprende a usar R hacer el histograma y agregarle detalles a la gráfica con solo usar la función hist(), en cambio en ggplot2 se requiere hacer una combinación de comandos, ejemplo ggplot()+geom_hist()+…

Esto a primera vista hace parecer que ggplot2 complica mucho el hacer una simple gráfica, pero no es así. El valor o la relevancia de ggplot2 es cuando uno hacer gráficas más elaboradas, ya que cierta parte del procesamiento de los datos o de la detección de patrones de varias variables resulta inmediatamente visible, lo cual es hasta ahora para mi muy complicado hacerlo solo con las gráficas básicas de R. Así que invito a leer el libro de Hadley Wickham ( referencia [1]) o visitar el sitio de ggplot y por supuesto irse familiarizando con ” la gramática de gráficas”.

Boxplot

Como mencioné replico las gráficas en ggplot2, pero para eso hago en general dos versiones , haciendo uso de la función qplot y de ggplot. No explico más sobre las gráficas, pero comparto el código para replicar cada una.

#Boxplot
qplot(data=iris, y=iris$Sepal.Length,x=iris$Species, geom="boxplot", main="Boxplot por tipo de Iris",xlab="Tipo de Iris", ylab="Longitud de Sepal", colour="red")
ggplot(data=iris, aes(y=iris$Sepal.Length))+geom_boxplot(aes(iris$Species), col="red")+ylab("Longitud del Sepal")+xlab("Tipo de Iris")+ggtitle("Boxplot por tipo de Iris")

Boxplot_ggplot

Gráfica de Punto

#Gráficas de Puntos

qplot(data=iris, y=iris$Sepal.Length,x=iris$Species, geom="jitter", main="Jitter de la Longitud de la Sepal por tipo de Íris", ylab="Longitud", xlab="Tipo de Íris")
ggplot(data=iris, aes(y=iris$Sepal.Length,x=iris$Species ))+geom_jitter()+ylab("Longitud")+xlab("Tipo de Íris")+ggtitle("Jitter de longitud de Sepal")

Jitter_ggplot

Histograma

#Hitograma
qplot(data=iris, x=iris$Sepal.Length, geom="Histogram", col="red", main="Histograma", ylab="Cantidad", xlab="Rango de Valores")
qplot(data=iris, x=iris$Sepal.Length, main="Histograma", xlab="Rango de Valores", ylab="Frecuencia")+geom_histogram(col="red")

#Para generar el histograma con la medición de la densidad
ggplot(data=iris, aes(x=iris$Sepal.Length))+geom_histogram(aes(y=..density..), col="red")+xlab("Rango de Valores")+ylab("Frecuencia Relativa")+ggtitle("Histograma")

Hist_ggplot

Densidad

#Density
qplot(data=iris, x=iris$Sepal.Length, geom="Density",main="Densidad", ylab="Frecuencia Relativa", xlab="Rango de Valores")
#Para rellenar el área
ggplot(data=iris, aes(x=iris$Sepal.Length))+geom_density(colour="red", fill="orange")+ylab("Densidad")+xlab("Rango de Valores de la Longitud")+ggtitle("Densidad de la Longitud de la Sepalo")

Densidad_ggplot

Gráficas de Barras y de pie

#Barras

qplot(data=iris, factor(iris$Species), geom="bar", main="Ejemplo de gráfica de Barras", ylab="Cantidad",xlab="Tipo de Íris", fill=factor(iris$Species))

#Pie
ggplot(data=iris, aes(x=factor(iris$Species),fill=factor(iris$Species)))+geom_bar(width=1)+coord_polar()+xlab("Clasificado por Tipo de Especia")+ylab("")

Bar_ggplotPie_ggplot

Combinar gráficas en ggplot2, es muy sencillo solo se agrega a la gráfica que se está haciendo la otra gráfica que se desea. Ejemplo agregar la densidad al histograma resulta sencillo, ya que solo se necesita agregar  “+geom_density()”. Hago dos ejemplos para mostrar como funciona ggplot2.

#Boxplot y jitter

ggplot(data=iris, aes(y=iris$Sepal.Length))+geom_boxplot(aes(iris$Species), col="red")+geom_jitter(aes(iris$Species))+ylab("Longitud del Sepal")+xlab("Tipo de Iris")+ggtitle("Boxplot por tipo de Iris")

#Histogramas y Densidad

ggplot(data=iris, aes(x=iris$Sepal.Length))+geom_histogram(aes(y=..density..), col="red")+geom_density(colour="blue", size=1.5)+xlab("Rango de Valores")+ylab("Frecuencia Relativa")+ggtitle("Histograma")

Boxplot-jitter_ggplot

Hist_density_ggplot

Lattice…otra librería.

Cuando se requiere hacer una exploración de datos con varias variables, no resulta muy fácil pensar en como hacer eso y peor aún si se requiere hacer una comparación entre esas variables por varios años o varios periodos.

En general la mayoría de problemas involucran varias variables de distinta naturaleza, es decir; algunas pueden ser variables categóricas, indicadoras otras variables cuantitativas o cualitativas; en fin;  hacer un análisis de este tipo de datos requiere un cierto tiempo y las gráficas nativas a mi parecer hacer resultan no ser la mejor herramienta para trabajar.

En este caso las dos librerías, ggplot2 y lattice creo que ayudan bastante, detrás de estas dos librerías están dos teorías distintas sobre la exploración o visualización, es por eso que cada una requiere su tiempo de entrenamiento y sobre todo de investigación y aprendizaje. Dejo en las referencias los textos base para aprender a fondo como funcionan estas librerías.

Para las gráficas hago uso de un conjunto de datos que se descargarán automáticamente en R con una línea de código.

#Carga de datos y exploración básica

#Se cargan los datos desde el servidor
hsb2 <- read.table('http://www.ats.ucla.edu/stat/r/modules/hsb2.csv', header=T, sep=",")
#Se revisan los aspectos generales de los datos
head(hsb2)
dim(hsb2)
str(hsb2)

#Agrego una nueva variable
hsb2$gsex=factor(hsb2$female,labels=c("Male","Female"))
summary(factor(hsb2$gsex))
#Male Female 
# 91 109

 Boxplot y gráfica de puntos.

#Boxplot
bwplot(~read,hsb2, main="Boxplot de lectura", xlab="Lectura")
bwplot(~read|gsex,hsb2,main="Boxplot de lectura", xlab="Lectura")

#dotplot
dotplot(~read,hsb2,main="Gráfica de puntos de lectura", xlab="Lectura")
dotplot(~read|gsex,hsb2,main="Gráfica de puntos de lectura", xlab="Lectura")

Boxplot_latticeBoxplot_lattice2Dot_lattice2

Histogramas y Densidad

#Histograma
histogram(~math,hsb2,main="Histogramas por Género", xlab="Lectura",ylab="Porcentage Total")
histogram(~math|gsex,hsb2, ylab="Porcentage Total", xlab="Math", main="Histogramas por Género")

#Densidad
densityplot(~math, hsb2,main="Densidad de la variable math", xlab="Rango de valores", ylab="Densidad")
densityplot(~math|gsex, hsb2,main="Densidad de la variable math", xlab="Rango de valores", ylab="Densidad")

hist_latticeHist_lattice2Density_latticeDensity_lattice2

Cuantiles y Scatter Plot

Estas dos gráficas, no las había comentado. La primera se puede calcular para cualquier variable y es un modo rápido de identificar el comportamiento de la distribución de la variable, principalmente se puede validar el comportamiento de las colas de la distribución. La segunda es apropiada para detectar la posible relación entre dos variables y para explorar muchas variables se puede construir un panel de scatterplot para detectar visualmente entre qué variables es posibles que existe alguna relación.

#qqplot
qqmath(~math,hsb2, main="Gráfica de cuantiles o qqplot", xlab="qnorm",ylab="Variable Math")
qqmath(~math|gsex,hsb2, main="Gráfica de cuantiles o qqplot", xlab="qnorm",ylab="Variable Math")

#scatter plot
xyplot(write~read,hsb2, main="Scatter Plot de las variables write vs read",xlab="Variable read",ylab="Variable write")
xyplot(write~read|gsex,hsb2, main="Scatter Plot de las variables write vs read",xlab="Variable read",ylab="Variable write")

qqplot_latticeqqplot_lattice2Scatterplot_latticeScatterplot_lattice2

Gráficas en ggplot2

Lo único que hago en lo siguiente es replicar el tipo de gráficas separadas por una variable categórica.

Boxplot y dotplot

#boxplot
ggplot(data=hsb2,aes(y=read),colour=factor(hsb2$gsex))+geom_boxplot(aes(x=hsb2$gsex,fill=factor(hsb2$gsex)))+xlab("Genero")+ylab("Variable read")+
 ggtitle("Boxplot de la variable read vs genero")+theme(plot.title = element_text(lineheight=.8, face="bold"))

#dotplot
ggplot(data=hsb2,aes(y=read))+geom_jitter(aes(x=hsb2$gsex,colour=factor(hsb2$gsex)))+xlab("Genero")+ylab("Variable read")+
 ggtitle("Jitter de la variable read vs genero")+theme(plot.title = element_text(lineheight=.8, face="bold"))

Boxplot_ggplot_2Dotplot_ggplot

Histogramas y Densidad

#Histograma
ggplot(data=hsb2,aes(x=read))+geom_histogram(colour="black",aes(fill=factor(gsex)))+facet_grid(.~gsex)+xlab("Genero")+ylab("Variable read")+
 ggtitle("Histogramas de la variable read vs genero")+theme(plot.title = element_text(lineheight=.8, face="bold"))

#Density

ggplot(data=hsb2,aes(x=read))+geom_density(colour="black",aes(fill=factor(gsex)))+facet_grid(.~gsex)+xlab("Genero")+ylab("Variable read")+
 ggtitle("Densidad de la variable read vs genero")+theme(plot.title = element_text(lineheight=.8, face="bold"))

Hist_ggplot2Density_ggplot2

Cuantiles y Scatterplot

#qqnorm

ggplot(data=hsb2,aes(sample=read))+geom_point(stat="qq",aes(colour=factor(gsex)))+facet_grid(.~gsex)+xlab("Genero")+ylab("Variable read")+
 ggtitle("Cuantiles de la variable read vs genero")+theme(plot.title = element_text(lineheight=.8, face="bold"))

#Scatter plot

ggplot(data=hsb2,aes(x=read, y=write))+geom_point(aes(colour=factor(gsex)))+facet_grid(.~gsex)+xlab("Genero")+ylab("Variable read")+
 ggtitle("Scatterplot de la variable read vs write")+theme(plot.title = element_text(lineheight=.8, face="bold"))

Qqplot_ggplotScatterplot_ggplotLos ejemplos anteriores muestran la construcción de gráficos donde podemos ver la relación entre variables o explorar con mayor detalle. El siguiente paso entre el análisis exploratorio y lo que ahora es muy sencillo por las capacidades de computo es hacer análisis exploratorio con cierto nivel de interactividad.

Los casos más llamativos suelen ser las simulaciones, estas se pueden hacer tomando como parámetro una variable temporal. Ejemplo, si se desea ver el comportamiento de cierta población sobre la frontera de dos países se puede usar un mapa y ver con respecto al tiempo los flujos o movimientos de las personas.

Estas simulaciones a mi me parecen gratas para tener idea del fenómeno que se explora más que de la naturaleza de las variables.

En R se pueden hacer gráficos con cierta capacidad de interactividad está ggvis o shiny, así que los ejemplos siguientes los hago con ggvis. Para aprender a usar Shiny la recomendación es ver la documentación en la página oficial.

Página oficial Shiny

Gráficas de Puntos

#Puntos por Género
slider<-input_slider(1,100)

hsb2 %>% 
  ggvis(~as.factor(female),~read, 
        fill :="red"
       )%>% 
       layer_points(size :=slider)%>%
       layer_points(stroke := "black", fill := NA, size :=slider )%>%
       add_axis("x",title="Genero, 0 = Masculino y 1 = Femenino")%>%
       add_axis("y",title="Lectura")

La respuesta que se obtienen del código anterior es:

puntos_ggvis

#Densidad
hsb2 %>% 
  ggvis(~read, 
        fill :="red"
       )%>% 
       layer_densities(adjust = input_slider(0.1, 2))%>%
       add_axis("x",title="Densidad de la variable Lectura")%>%
       add_axis("y",title="")

La imagen que se obtiene son las siguientes:

Densidad_1.png

Variando la estimación se tiene:

Densidad_2.png

Gráfica de Barras

#Densidad
hsb2 %>% 
  ggvis(~read, 
        fill :="red"
       )%>% 
       layer_bars()%>%
       add_axis("x",title="Grafica de Barras")%>%
       add_axis("y",title="")

EjempBarras_ggvis.png

Más ejemplos de como funciona ggvis se pueden consultar en la página oficial:

Página Oficial de ggvis

Referencias:

1.- Ggpplot2 -Hadley  Wickham.

2.-Lattice – Deeppayan Sarkar.

 

 

 

 

Anuncios

Responder

Por favor, inicia sesión con uno de estos métodos para publicar tu comentario:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s